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The Benjamin-Feir instability of a 
deep-water Stokes wavepacket in the presence 

of a non-uniform medium 

By MARIUS GERBER 
Department of Ocean Engineering, Stellenbosch University, Stellenbosch 7800, South Africa 

The influence of a non-uniform medium on the Benjamin-Feir instability of weakly 
nonlinear deep-water waves has been investigated, and an approach via a suitable 
nonlinear Schrodinger equation was adopted. For the derivation of the relevant cubic 
Schriidinger equation, the approach of Yuen & Lake (1975) was followed and an 
applicable dispersion relation and energy equation was derived by the averaged 
Lagrangian technique. With the assumption that the lengthscale of current variation 
is much greater than the lengthscale of the wavepacket, a cubic Schrodinger equation 
with slowly varying coefficients is obtained. Three different examples of non-uniform 
media are treated: (i) waves on a current with variation along the stream; (ii) waves 
on a shear current ; and (iii) long deep-water gravity waves interacting with shorter 
waves. 

1. Introduction 
Since the discovery by Benjamin & Feir (1967) that weakly nonlinear surface 

gravity waves are unstable to sideband perturbations, rapid advances in the 
understanding of the behaviour of such deep-water waves have taken place. In  
particular, investigation of the properties of the nonlinear Schriidinger equation, 
which is the evolution equation for the slowly varying envelope of the carrier wave, 
has led to applications in many different areas. The effects of variable depth have 
been studied by Djordjevic & Redekopp (1978), who deduced a cubic Schrodinger 
equation with variable coefficients for mild bottom slopes. Turpin, Benmoussa & Mei 
(1983) extended the analysis of Djordjevic & Redekopp (1978) to include the effects 
of a slowly varying current. A cubic Schrodinger equation was also found for the wave 
envelope, the coefficients now being a function of the topography as well as the 
current. Smith (1976) also deduced a cubic Schrodinger equation in an attempt to 
explain giant waves as encountered in the Agulhaa current on the east coast of South 
Africa. 

The Benjamin-Feir instability criterion can also be recovered from the cubic 
Schrodinger equation, as shown by Yuen & Lake (1978), Stuart & DiPrima (1978), 
West (1981) and other workers. Even better agreement between theory and experi- 
ment was obtained by Dysthe (1979) who calculated an improvement to the 
Benjamin-Feir instability criterion using a fourth-order envelope equation. The 
dominant new effect introduced by this equation is the wave-induced mean flow 
which gave rise to a Doppler shift in the frequency of the carrier wave, and a 
corresponding down-shift in experimental values, in agreement with that found by 
Lake et al. (1977). Janssen (1983), however, argued that since the frequency shift 
associated with this fourth-order equation is periodic in space and time, it must be 
due to other effects, such as dissipation. 
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All the prtrameters describing a weakly nonlinear wavetrain can be influenced by 
large-scale current variations. For a slowly varying current U(x, t ) ,  changes in the 

. flow velocity will cause corresponding variations in the apparent frequency and, as 
mentioned, a Doppler shift in the frequency of the carrier wave. Energy exchanges 
between the current and the wavetrain will also lead to amplification or dissipation 
of the wave amplitude. From the results of Dysthe (1979) and Janssen (1983), a 
reasonable assumption would thus be that a shift in the sideband growth rates can 
be expected for weakly nonlinear waves in an inhomogeneous medium. This is 
contrary to the results of Smith (1976) who found that modulations are absent at 
a caustic when surface waves are reflected by a shear current. Peregrine (1976) also 
mentioned that a current will not influence the instability criterion, but no analysis 
in proof is presented. In  a numerical study by Turpin et al. (1983), however, these 
authors show that a current may well influence the stability of nonlinear waves. A 
positive supercritical current was found to give rise to stable Stokes waves in deep 
water, while a negative subcritical current will cause all Stokes waves to become 
unstable. 

In  this paper we intend to investigate the influence of a steady current on the 
Benjamin-Feir instability criterion of surface waves. A cubic Schrodinger equation 
in the presence of a current will form the basis of our analysis. For the analysis the 
approach of Yuen & Lake (1975) is followed and the governing equation is derived 
from a suitable variational principle, leading, as an intermediate step, to a dispersion 
relation and an energy equation ($2). In $3 the desired cubic Schrodinger equation 
will be derived from the above two relations. The derivation involves three small 
parameters: the usual wave slope s; the spectral bandwidth d ; and a third parameter 
introduced by the current. This means that asymptotic limits may be identified, and 
some aspects of the asymptotic solutions so introduced are discussed in $4. Sections 
4.1 and 4.2 are devoted to the derivation, and discussion, of the instability criterion 
that would apply in the presence of a current. A steady current, varying with distance 
along the stream, is treated in $4.1, while a shearing current is considered in $4.2. 
Since the results of $ 4 are also expected to apply for long waves interacting with short 
waves, some aspects of such interactions are discussed in $4.3. Finally, $5 summarizes 
our conclusions. 

2. The variational principle and modulation equations 
The general use of a variational principle, leading to the calculation of a dispersion 

relation and an energy equation for finite-amplitude waves, is well documented in 
the literature. The interested reader is referred to Whitham (1974) for an especially 
lucid presentation. For a non-uniform medium, varying slowly in space and time, the 
‘average variational principle’ (Whitham 1960, 1962, 1965) will also apply, with the 
difference that the averaged Lagrangian may depend explicitly on x and t ,  as well 
as through the amplitude and phase functions. 

For waves on still water, Yuen & Lake (1975) calculated an averaged Lagrangian, 
(L), to second order in both wave slope s and bandwidth d,  using the Lagrangian 
given by Luke (1967) : 

6 
L = J [A+t($:+#)+PIdz, 

0 

where is the velocity potential, and the free surface of the fluid is given by 6. 
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Variation of (L) with respect to the amplitude and phase then generate, respectively, 
the dispersion relation 

u = (gk); 
8 k*a 

(note the correction in the last term when compared with Yuen & Lake 1975) and 
energy equation 

da ul = (gk)i. aE a 
-+-(CeoE) = 0 ;  Ceo = 2 at ax dk’ 

For waves in the presence of a current, a Lagrangian corresponding to the integral 
of the Bernoulli equation, superimposed on a current U(x,t), then seems a logical 
extension. With the assumption that the unsteady, non-uniform current motion on 
a level mean surface can be represented as irrotational motion so that a velocity 
potential U = V@ can be defined, the Lagrangian becomes 

Rz, Y, t )  

L = I [ ( ~ + @ ) t + K V ( ~ + ~ ) } a + Q Z l d z .  (2.1) 
0 

The effect of vorticity will be reflected in the dispersion relation to be generated by 
the averaged Lagrangian. Weak vorticity can be expected to have a correspondingly 
weak influence on the eventual cubic Schrodinger equation, so that, to second order, 
the assumption of irrotationality can be justified. 

The averaged Lagrangian for weakly nonlinear waves on a steady, non-uniform, 
one-dimensional current U =  [U(z ) ,  O , O ]  can be calculated from (2.1). Since the 
analysis will be confined to waves in deep water, the assumption of Lighthill (1965), 
that the mean height and mean velocity will play a negligible role, will apply. It 
should be noted, however, that this assumption does not hold for long waves and 
a pseudo-phase must be defined as was done by Whitham (1974). The expression 
obtained for the averaged Lagrangian is 

1 ( w - k Q a  
( L )  = -- u: +b(a: +fk*at). 4 k  

This is essentially the same as the expression obtained by Yuen & Lake (1975) when 
their analysis is only carried through to O(8, Ao)  ; that is when higher-order dispersion 
is not taken into account, and when ( o - k U )  in (2.2) is replaced by the intrinsic 
frequency u, which is the correct parameter in the absence of a current. Higher-order 
dispersive effects can now be introduced in the analysis by using the idea of 
pseudo-differential operators tw suggested by Whitham (1974, p. 526). The eventual 
expression obtained for the averaged Lagrangian (in physical variables x and t )  is 

where terms of O ( 8 ,  A s )  have been retained. It should be noted that this expression 
is not a true averaged Lagrangian in that variation with respect to the wavenumber 
and frequency will not render the correct expression for the wave action and 
wave-action flux. However, (2.3) will produce the correct dispersion relation to the 
desired order. For this reason the notation (L), which is reserved for the true 
averaged Lagrangian, was not used in (2.3). 
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The modulation equations are finally obtained from the variational principle 

S (L)(w,k,a,a,)dxdt = O .  

Variation of (2.3) with respect to the amplitude a then gives the dispersion relation 

II 
8 k2a 

The term +(gk)f k2a2 is the well-known Stokes correction for nonlinearity, while the 
term i(gk)t azz/k2a accounts for the first correction due to higher-order dispersion. 
The last term is just the Doppler shift due to the influence of the current. Finally, 
variation of (2.2) with respect to the phase 8 gives the desired energy equation 

d[E]+A[(%+U)EJ at n1 ax dk  
= 0. 

Here u1 = (gk)t = o - kU is the linear dispersion relation in the presence of a current. 
Equation (2.5) is the well-known wave-action equation which, for a = a(x, t), 
k = k(x, t )  and n = a(k), can be expanded to give 

For waves in deep water, (2.6) can be further simplified to 

aa 3 d U  
at dk ax dx d(do)  dk ax 4 d x  
aa dnl aa -+--+&- 2 + U - + - - a  = 0. 

Equations (2.4) and (2.7) are the two equations required in the next section to derive 
a cubic Schrodinger equation which describes the evolution of a nonlinear wavepacket 
in the presence of a current. 

3. The cubic Schradinger equation for a non-uniform medium 
The dispersion relation and energy equation for Stokes waves on a non-uniform 

flow were given by (2.4) and (2.7). In  this section we shall show that both these 
expressions will contribute to the derivation of a dissipative type of cubic Schrodinger 
equation which will apply in the presence of a current. This equation, which will be 
called the Modified Cubic Schrodinger Equation (MCSE), is the evolution equation 
for the amplitude of a nonlinear wavetrain superimposed on a current. Turpin et al. 
(1983) derived a similar equation (when the deep-water limit of their equation (2.22) 
is taken) using the method of multiple scales. Alternatively, a simpler, more heuristic, 
derivation would be possible by identifying the appropriate interaction terms of 
linear theory, and suitably modifying the still-water cubic Schrodinger equation. A 
two-dimensional extension to the MCSE will also be presented in this section. Since 
two ordering parameters were introduced in the calculation of the dispersion relation, 
both parameters will be reflected in different terms in the MCSE. In addition, the 
derivation will introduce a third ordering parameter n, the ratio of the wave 
group length to the lengthscale of the current. For very small values of n, the 
still-water cubic Schrodinger equation will be recovered. 
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3.1. Steady current, varying with distance along the stream 
For the derivation, the narrow-spectrum approach, like that of Phillips (1981), will 
be followed. That is, for a slowly varying wavetrain, the only significant contributions 
are assumed to come from a narrow spread of wavenumbers and frequencies around 
a central wavenumber k, and frequency w,. In spectral terms, if the surface 
displacement of the wave group on still water is given by 

~ ( z ,  t )  = J a ( k )  eie(z*t) dk, 

where, in one dimension, 0 = kx-wot, and w = w ( k ) ,  this implies that a(k)  will be small 
except when k- k, N O ( A ) ,  A Q 1. Here the spectral bandwidth, A = Sk/k ,  the ratio 
of individual wavelength to the group length, is the parameter used to describe the 
narrowness of the spectrum. The phase function 0 ( z , t )  will also reflect the slow 
variation 

where the slow variables are X = Ax,  T = At and A 4 1. In  the presence of a steady 
current U = [ U ( z ) ,  0, 01 the dispersion relation becomes w = a(k) + kU, with the fast 
variation in phase 0,(z, t )  = k, z - w, t ,  while the slow phase variation is 

@(X, T) = AKZ - dQt 
= dKx - (W - W,) t 
= d ~ z - [ ( t ~ - ~ , ) + d ~ U ] t  
= KX-[Z+KU]T; At: = a-a0, X = Ax,  T = At, 

so that 
a@ 
ax A -  = A K ,  

The surface displacement of the group in the presence of the slowly varying current 
U(X) is then 

C(z, t )  = 

which, for the narrow-spectrum approach can be written as 

U(X)) eie(z* t ,  dk, 

{ = exp{i(k,z-[a,+k, V ] t }  a(k, U(X))exp{i[KX-((C+KU) T]}dk. i 
The envelope of the group is given by 

A(X,T) = la@, U) exp{i[KX-(Z+KU)T]}dk, 

so that the rate of change of the envelope is 

aA 
= j { g - i a [ Z + ~ l i ]  exp{i[KX-((C+KU)T]}dk 

reflecting a slow change in the amplitude and phase functions. 

11 PLM 176 



316 M .  Gerber 

For nonlinear waves on a current, and with second-order frequency dispersion, the 
intrinsic part of the dispersion relation (2.4) gives 

a ( k ,  a) = (gk)t [ 1 +;k2a2 + A  8 5 1  k2a ' (3-3) 
This can be written as 

1 d2a, a,, 
2 dk2 a ' 

a( k, a )  G a,( k) + a,( k) a2 -- - - 

with a1 = (gk): and u2 = ;a, k2. Since the spectrum was assumed narrow, a(k)  can 
be expanded in a Taylor series about the central wavenumber k,. The linear dispersion 
relation a,(k) then becomes 

d a  d2a 
a,(k) = a,(k,)+dKL dk (k,)+!j(Atc)22 dk2 (k,)+O(A3). (3.4) 

On substitution of (3.3) and (3.4) in (3.2), the slow rate of change in phase of nonlinear 
waves in the presence of a current is 

For X = Ax, T = At, and using (3.1), this gives 

1 a2a d2u ae 
ax (k,) + a2(ko) a2 -+A2-  - 2 (k,) + A- U = 0. a a X 2  dk2 

ae a a a  
A -+ A - (ko) +;A2 aT ax dk 

(3-6) 

The amplitude (energy) equation was derived from the wave-action equation in the 
previous section. The form (2.7) will be used in this derivation to reflect the slow 
change in amplitude of the wavepacket. The terms involving derivatives of the linear 
dispersion relation in (2.7) can be substituted for from (3.4) in the following manner: 

The first two terms on the right-hand side of (3.7) are due to the influence of the 
current, so that three different small parameters will contribute to the eventual 
expression for the middle term of (2.7). This is because the current variation 
introduces another lengthscale, and the small parameter R = LJL,, the ratio of the 
group length to the current lengthscale, may be introduced. The middle term of (2.7) 
then gives to the desired order 

The three terms on the right-hand side of (3.8) are respectively of order EAR, sA2n 
and €A2,  so that for R < 1 the second term will be smaller than the other two and 
can be neglected. Equation (2.7) now becomes 
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or when the slow variables are identified: 

dU d[drr  ] ' d X  
aa aa da aa 
aT ax dk ax dX dk 

3 8  aa d2al a 2 8  d2a, 
aXaX dk2 ax2 dk2 

A - + A - 2 (k,) + A U-+ i A  - 2 (k,) a + SA -a 

+A2---(ko)+~A2a--(k,) = 0. (3.10) 

The terms retained are O(eA.rr, €A2) .  

as 
A(X, T) = a(X, T) exp [i@(X, T)], 

where the governing equations for phase and amplitude are given by (3.6) and (3.10) 
respectively. We note that 

A complex wave amplitude, slowly modulating the carrier wave, can now be defined 

IA12 A = a3eie, 

so that if a eie(x* T, multiplied with (3.6), is subtracted from i eie(x* T, multiplied with 
(3.10), the resulting combination is 

aA 1 d d a  -+ {&dx[d; -- -( "1 ) +-- ::? A ] 
1 dadl a2A 
2 dk2 ax2 +--(k ) - - ~ ~ ( k ~ ) l A l ~ A  = 0. (3.11) 

On substitution of the values for u1 and u2 the MCSE can finally be written as 

a a2A 
-+(Cgo+U)-+ aA (kd2 --+-- s:2 A+liA-+1 ki ax2 2iuo kt  lA12A = 0, (3.12) 
at 

since the group velocity Cgo = !p,/k,. 

3.2. Two-dimensonal currents; U = ( U ,  V, 0) 
The procedure of $3.1 can also be followed to obtain the form of the MCSE when 
in the presence of a two-dimensional current U =  ( U ( x ) ,  V(y),O). In  this case the 
governing equation for the wave amplitude will be the two-dimensional deep-water 
counterpart of (2.6), or the so-called radiation stress equation (Longuet-Higgins & 
Stewart 1964) g+V*[(g+ U) E ] + S : y  = 0. (3.13) 

The rate-of-strain tensor for the mean flow in (3.13) is 

11-2 
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while, for a coordinate system orientated at an angle $ to the propagation direction, 
the radiation stress tensor is given by 

Since E = 1$qa2, (3.13) can be written as 

"+(f+ at u)g+(g+ V)$++a$($+ U ) + + + ( E +  v) 

(:; 3 au av 
ax aY 

+f cos2$-a+f sin2$--a+a sin$ cos$ -+- a = 0, (3.14) 

where the dispersion relation a = a(Z, m). 

al(Z, m) must be expanded in a Taylor series about Z,, m,. Thus 
To generate the higher-order dispersive terms, the linear dispersion relation 

The only other relation necessary for the derivation is the two-dimensional 
counterpart of (2.4). This is given by 

with k = Ikl = (Z2 + ma)$. Following the procedure of the previous section, the form 
of the MCSE, equivalent to (3.11), is found to be 

au 

This is the most general form. For a constant dominant wave vector k = (k,, 0), and 
on substitution for g1 and a2, (3.15) becomes 

a, a2A a, a2A A ---+---kr k '7 ] 8ki aX2 4ki ay2 2 0 I A 1 2 A = 0 '  

Note that the one-dimensional form of the MCSE can be recovered from (3.15) with 
the restrictions U = [ U(x), 0, 01 and Cga = (daJdZ,O, 0). 

3.3. Steady current, varying across the stream 
The form of the MCSE for waves on a shearing current, U = [0, V(s), 01, and with 
an angle $ between the wave crests and the x-axis, can be obtained as a simplification 
of (3.15). The form of the equation obtained is 
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For u1 = (gk ) f ,  u, = k2 this is 

aA aA I d  cos@)A+$sin@ c o s @ c A + l i A -  u P A  
dx * k: ax2 -+cga cos#-+-- 

at ax 2ds('gO 

+iiuo kg IAIz A = 0, (3.16) 

since the component of the group velocity in the x-direction is Cga cos 4. 

4. The Benjamin-Feir instability for a non-uniform medium 
4.1. Steady current, varying with distance along the stream 

The form of the MSCE that applies in this situation was given by (3.12). In the 
derivation three different ordering parameters were identified - the usual two still- 
water parameters: the wave slope E = ka, and the spectral bandwidth A = h/Lg, the 
ratio of wavelength to group length. In addition a third parameter n = L,/L,, 
the ratio of group length to the lengthscale of current variation, was introduced. 
The MCSE, (3.12), can be written as 

where y = *o/k: and B = ico ki. The nonlinear self-interaction term, the last term 
on the left-hand side of (4.1)) is of order eS, while the dispersive term, the term 
involving y(x), is of order €A2.  The first three terms are individually of order EA.  This 
leaves the two dissipative terms, with ordinary derivatives, which are easily shown 
to be of order €An. In  the limit n 4 E and n 4 A ,  but not restricting the magnitude 
of E and A with respect to each other, the cubic Schrodinger equation in the presence 
of a constant current U =  8 is recovered. If the superscript - is used to denote 
constant parameters (as would be found when U = 8, or on still water when U = 0) 
the coefficients of (4.1) will, in this case, be 

With the further restriction A 4 e 4 1, the nonlinear Stokes wave equation is 
obtained, the solution of which is usually given by 

In the limit E 4 A 4 1, the linear propagation of small-amplitude groups are 
described, while for E - A Q 1, the usual sech-profile soliton solution can be obtained 
from the inverse scattering transform. 

To calculate the Benjamin-Feir instability for the particular form of inhomogen- 
eous medium, the basic state to be perturbed will be a Stokes wave in the presence 
of a current. The governing equation is (4.1) in the limit when A 4 n 4 1 and 
A < E + 1, but not restricting the wave slope e relative to n. The resulting equation 
is 

- + ( C g 0 + U ) L +  at aA ax ( ~ d ~ + ~ ~ A l + i / 3 ( x ) ~ A l I z A l  -- 4 dx = 0. (4.3) 
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The solution of (4.3) (to O ( ~ d n ,  e3 ) )  is 

with @, and @2 arbitrary functions of their arguments, and where 

dcgo 3 d U  -+-- 
dx 2 dx 

P(x) = 
%O+U . 

Equation (4.4) can be shown to simplify to (4.2) when U = 0. 
The infinitesimal perturbation is taken as 

dx 
B(x, t )  = a,(x, t )  exp 

where 

= a,(x, t )  eiLr, 

dx 
t 

= I,, m u -  
is the moving coordinate and C is the perturbation frequency. 

On substitution of 
A = [1+ B(x, t ) ]  A,(x, t )  

into (4.1), the lowest-order linear equation for the perturbation is found as 

euq k+ (cg, + U )  2- iy(x) K 2 a l  + ip(z) 1 ~ ~ 1 2  Lei17 + e-iz?] a, = 0, (4.5) 

where the perturbation wavenumber K = C/(Cgo+ U ) .  If now (4.5) is multiplied by 
a, e-iz’’, and the complex-conjugate of (4.5) is added to the resulting expression, the 
differential equation for the perturbation is obtained as 

1 aa 

Clearly, exponential growth of a, will result if 
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while the appropriate choice for the function G1 is easily shown to be 

The real part of the amplitude of the Stokes wave in the presence of a current is then 
given by 

1 dCgo 3 d U  
4 d x  (4.8) 

CBO + 

where the modification (due to the current) to the still-water case is given by the 
exponential in (4.8). The instability criterion (4.7) involves the unknown function 
B ( x ) .  If Taylor-series expansion of B(x) about its constant-current value 1 is assumed, 
and on substitution for A,, (4.7) can be integrated directly. The eventual expression 
that is obtained is the requirement that 0 < cos2Cq < 1. When the full spatial 
variation of P ( x )  is taken into account, the result is not immediately obvious but can 
be shown to involve the same restriction, namely that cos2Zq > 0. 

To further explore the stability of the Stokes wave, (4.5) is multiplied by a, e-'=q 
and the complex-conjugate of (4.5) is subtracted from the resulting expression. The 
expression obtained is 

for COB 2Z7 > 0. Substitution for y ,  /3 and A, then, finally, shows that Stokes waves 
on a current will be unstable to perturbations with wavenumber KO = K /  k, in the range 

. 
Note that when U-t  0 (or U+O), since k,(x)+E,, (4.9) reduces to the still-water 

sideband instability criterion as given by Benjamin-Feir (1967). The derivation is 
fairly simple and does not appear to have been published before. An alternative 
approach would be that m given by Yuen & Lake (1978). With their approach, the 
dispersion relation for the perturbation that is obtained is 

Instability will occur when Be < 0, and the condition (4.9) is recovered. 
A better understanding of the influence of the current on the instability criterion 

can be obtained by substitution from known wave-current interaction results. For 
a steady wavetrain moving in the 2-direction on a current U ( z ) ,  the linear theory, 



322 M. Gerber 

deepwater relation for the variation in phase velocity and wavenumber was calculated 
by Longuet-Higgins & Stewart (1961). With the notation co = Zo when U = 0, it is 

Co = iz0[l+(l+3t],  

Since Cgo = ~o in deep water, and for the lower limit of integration xo = 0, the 
exponential in (4.9) can be integrated. The instability criterion (4.9) then becomes 

(4.11) 

where the arbitrary constant generated in the integration was determined from the 
condition that the exponential in (4.9) does not contribute to the instability criterion 
as U+O. Substitution for the spatial variation of k o ( z )  in (4.1 1 )  now gives the desired 
Benjamin-Feir instability criterion for Stokes waves on a current U = [ U ( z ) ,  O , O ] :  

K 641/2 Lo 6, 
O <  7& = 4l 

1 + y  1 +  1+, 
(4.12) 

With these substitutions we infer from (4.10) that instability of the wavetrain will 
result if the initial wave steepness Eo = goZ0 is sufficiently large, that is when 

go > I%! { [ 1 + gi (1 + [ 1 + 3 )6}. 
128 (4.13) 

This is shown graphically in figure 1 (a, b) where the normalized sideband growth rate 
4n Im (ao), where a, = G?/Z0, is plotted as a function of the steepness to for Ro = 0.2 
and 0.4 respectively, and for different values of rl = U/Eo. For comparison the 
still-water Benjamin-Feir growth curve (r, = 0) is also shown. The graphs were 
terminated at Eo = 0.4 since the waves are expected to break at  approximately this 
value (Michell 1893). It is clear from these figures that for positive current gradients 
(r, > 0), when the waves and the current are propagating in the same direction, 
waves of greater steepness than in the still-water case are needed before the onset 
of the instability. Alternatively, for fixed to, an increase in r, leads to a decrease in 
the sideband growth rates of the waves. Steeper waves are thus needed before 
instability results, and once instability is reached, the current has a further damping 
effect on the growth of the sidebands. For an adverse current gradient, when rl < 0, 
the energy density of the waves increases as a result of the radiation stress. The 
associated rapid steepening of the waves then causes even waves of very gentle initial 
slope to become unstable, and with a much increased rate of growth of the sidebands. 
The above results are also clear from the predicted e-folding time of the instability : 
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0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 
0, = Lo Z@ 

FIGURE 1. The normalized sideband growth rate 417 Im (a,) aa a function of the initial wave 
steepness go = b,&,, for various values of r, = UIE,, and for the modulation wavenumber (a) 
a, = 0.2, ( b )  0.4. 

For r, > 0 a longer time than in the still-water case is required for the same amount 
of growth of the sidebands, while for r, < 0 a shorter e-folding time is predicted. 

The results of this section are only expected to apply in the special case of waves 
and current propagating in the same (or opposite) directions. Physically this 
corresponds to the situation of waves generated on a current, with no shear, and with 
the waves propagating along with (or against) the current. For waves swept along 
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by (or propagating against) a large geostrophic current system, such as the Gulf 
Stream or Agulhas Current, since shear is not considered, the results will only apply 
to waves locally generated on the current. 

4.2. Steady current, varying across the stream 
The form of the MCSE in the presence of a shearing current U = (0, V(x, 0) was given 
by (3.16). When the results of $4.1 are used, the Benjamin-Feir instability criterion 
for (3.16) can be inferred directly provided irrotational wave perturbations can be 
justified in the presence of a vortical mean current. With the scaling introduced in 
53 the current vorticity is of order edn and thus the rotational part of the wave 
motion, due to the distortions of the vortex lines, is order edn smaller than the 
irrotational part. This is sufficient to justify the following analysis. Of course, the 
assumption of irrotationality for the mean current, as motivated in $2, cannot be 
justified. 

The instability criterion (4.9) could also have been written as 

0 < KO < 21/2k,a,, (4.14) 

which is just the original Benjamin-Feir (1967) result, but with the difference that 
KO, k, and a, in (4.14) are now functions of U(x), which must be determined. The 
spatial dependence of a,(.) was given by (4.8), which is the real solution to the linear 
and steady form of (4.3). With reference to (4.1), the real solution to the steady, linear 
asymptotic Stokes wave equation (i.e. when d 4 e,d 4 n) is needed. For (3.16) this 
is equivalent to seeking the solution to 

da, 1 d 
dx [2dx 

Cgo cos#-+ --(Cgo cos#)+asin# 

and the spatial dependence of a,(.) is easily found as 

The lowest-order spatial variations in phase velocity, wavenumber and angle # 
between the wave propagation direction and x-axis are also known from the work 
of Longuet-Higgins & Stewart (1961). They are given by 

ZO c, = 9 

k , = g ,  [ E  l--sin$ T , 
sin $ 

[1-(!J sin$T' 
sin# = 

Substitution of these relations, and performing the integration (where the lower limit 
2, = 0), gives for the criterion (4.14) 

2 4 2  go 6, cod $[ 1 --;- sin 6 
o < R , <  CO I" 

[ (1 -t sin $y - sin2JJ 
(4.16) 
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The constant of integration was determined from the condition that the exponential 
in (4.15) does not contribute to the instability criterion as V+O.  

The initial wave steepness go = lo CZ, required for instability can also be calculated 
for a shear current U = [0, V(x), 01. It is 

(4.17) 

From (4.17) it is clear that there is an upper limit to V for which a solution exists: 

(4.18) 

a relation also given by Longuet-Higgins & Stewart (1961). At the upper limit, for 
V > 0, and as $+goo, the waves are reflected by the current. For V < 0, however, 
as the opposing velocity of the current increase, the angle $ will decrease and the 
direction of propagation of the waves will tend to become normal to the current. In 
the limit 6 = O", (4.17) gives 

(4.19) 

the still-water Benjamin-Feir criterion, and as expected, the current has no effect 
on the instability criterion. 

When (4.17) is compared with the still-water Benjamin-Feir criterion, (4.19), the 
influence of the shear current on the instability criterion can be identified as 

(4.20) 

The function F( V/Eo) is shown graphically in figure 2 for various angles of initial entry 
6. Values of F( V/Zo) > 1.0 then indicate a larger initial steepness required for 
instability and thus greater stability than would be found in the still-water case, while 
for F( V/Zo) < 0 the waves will be relatively more unstable in the Benjamin-Feir 
sense. It is interesting to note that only waves with an initial angle of entry of less 
than 45" can exhibit greater stability when V/Eo > 0. Thus for small 6, and when 
the current and wave propagation directions coincide, greater stability of the waves 
is predicted. For waves opposing the current, however, an approximate angle of 
6 > 65" is necessary before greater stability than in still water will result. These 
results are also reflected in the variation of the e-folding time of the instability: 

2 
go k: a: 

7=-  

When the current-induced factor on the right of this expression is plotted as a 
function of V/Eo, a graph very similar to figure 3 is obtained. For 6G45O and 
V/Eo > 0, a longer e-folding time than in the still-water case is predicted. The waves 
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FIGURE 2. The factor F( V/E0) for various angles of initial entry 6. 
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FIGURE 3(a, b). For caption see facing page. 
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r, = VJtQ 
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r, = v/tQ 

FIQURE 3. The factor F( V/Co), the relative amplitude a,/$ and the relative steepness E,/$ aa a 
function of V/C0, and for angles of incidence (a) 6 = 5'; ( b )  25'; (c) 45'; (d) 65'; (e) 85'. 
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are more stable. Similarly, when V/Zo < 0, an angle 6 of approximately 65" is 
necessary before a longer e-folding time, and thus greater stability, is predicted. These 
results are not unexpected as can be seen from figure 3 which shows the relative 
amplitude (Longuet-Higgins & Stewart 1961 ) 

and the relative steepness 

of the waves, together with the factor F( V/Eo), as a function of V/Zo and for various 
angles of initial entry 6 (dashed lines only). It is clear that greater stability 
(F(  V/E0) > 1) can only result when eo/Eo < 1. As the steepness of the waves (relative 
to the still-water situation) is reduced owing to the current influence, greater stability 
of the waves results. The opposite also follows - as the waves steepen on an opposing 
current, the initial steepness required for instability is reduced, and the waves will 
be relatively more unstable. 

The upper limit of r2 = V/Zo > 0 is given by (4.18) and is reflected in figures 2 and 
3 as the vertical line at r2(crit), where I'2(Crit) is the value of r2 for which no solution 
can exist as r2 > r2(crit). At this value r2 = r2(crit) the wave propagation direction 
becomes parallel to the current direction, resulting in reflection of the waves and a 
rapid increase in the wave amplitude and steepness in the vicinity of the caustic. It 
is clear from these figures that the position of greatest instability of the waves must 
also be in the vicinity of the caustic. This is contrary to the results of Smith (1976) 
who found that steady finite-amplitude waves are stable at  a reflection caustic. 

At this point the results of this section can easily be applied to the still-water, 
fourth-order Benjamin-Feir instability criterion as calculated by Dysthe (1979). 
Janssen (1983) showed that the wave-induced mean flow described by the Dysthe 
equation could significantly explain the difference between the approximate results 
of Benjamin & Feir (and as reproduced by the cubic Schrodinger equation) and the 
exact computer-generated results of Longuet-Higgins (1978), provided Eo < 0.25. 
More accurate results are then also expected for this analysis. The analysis of Dysthe 
gives the wave steepness go required for instability as 

where the effect of the wave-induced current is given by the modulus-of-xo term. In 
the presence of a shear current the fourth-order contribution becomes 

and (4.17) can be written as 

(4.21) 

(4.22) 
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Since only real vales of Z, are possible, this introduces a range of values for which 
KO = K / E ,  is meaningful. The restriction 

(4.23) 

is in fact only significant for V/Z, sin$ greater than zero, and as a consequence 
requires R, to be small. An upper limit for V/$ is already known from (4.18), so that 
(4.23) becomes 

o < R, sin$, 

and it is clear that with decreasing $, KO will also be restricted to a smaller range. 
The above results, as predicted by the fourth-order Dysthe equation, can also be 

compared to the still-water Benjamin-Feir instability criterion, and in the following 
manner. Comparison of (4.22) with (4.19) identifies the influence of the shear current 
as 

The function G( V/Z,) is also shown in figure 3 (solid lines) for various values of KO. 
Since sin 5 O  < 0.2, no values of G( V/Z,) are shown in figure 3 (a). The influence of the 
wave-induced current, for fixed values of r,, can be seen to cause greater stability 
of the waves in the Benjamin-Feir sense. That is, waves of greater steepness than 
that predicted by the cubic Schrodinger equation are required before the instability 
will result. 

In figure 4(a, b) the normalized sideband growth rate 4n Im (6,) is shown as a 
function of the initial wave steepness 6, for angles of initial incidence of 45' and 85", 
and for I?, = 0.2. It can be seen that, whereas the growth rates are relatively 
insensitive to the value of r, when $ = 45O, the opposite is true when $ = 85'. The 
initial steepness values required for instability increase (decrease) dramatically for 
a very small increase (decrease) in r,, and the growth curves reflect this by a large 
increase (decrease) in the predicted growth rates, when the steepness Z, is kept fixed. 

4.3. Low-wave and short-wave interactions 

The results of $84.1 and 4.2 are also expected to apply for the situation of internal 
waves, or long (deep-water) surface waves, interacting with short surface waves. 
Here, however, the magnitude of the velocity field is expected to be considerably 
smaller. To first order, since the particle orbits of the long wave are circular, the effect 
of the long wave on the short wave will probably be zero. To second order, however, 
the fluid particle velocities under the long wave have a non-zero mean during a wave 
cycle. Phillips (1977) gives this Lagrangian drift velocity as 

u1 kla? cosh2k1(z+d) 
UL = - 

2 sinh2k,d ' 

where the subscript 1 is used to indicate the long wave. In deep water, when k,d % 1,  
this is 

uL = u1 k, a? = c? c,. 
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FIGURE 4. The normalized sideband growth rate 4n Im (a,) as a function of the initial wave 
steepness to = &,a,, for various values of r, = V&, and for angles of incidence (a) 6 = 45"; (b )  
85". The modulation wavenumber KO = 0.2. 

This means that the results (4.13), (4.17) and (4.22) can be applied directly provided 
r, = U/Zo and r2 = V/Zo in these relations are replaced by 

and where the subscript 0 is understood to indicate the short wave. 
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5. Concluding remarks 
In order to investigate the influence of a one-dimensional current on the third-order 

Benjamin-Feir instability of deep-water, finite-amplitude surface waves, a cubic 
Schrodinger equation in the presence of a current was derived. The approach of Yuen 
& Lake (1975) was chosen in preference to the more complicated multiple-scales 
technique. This necessitated the postulation and verification of an appropriate 
Lagrangian for waves on a current. The Lagrangian (2.1) was shown to generate the 
correct governing equation, as well as the relevant boundary conditions. Manipula- 
tion of the averaged Lagrangian (2.8) generated the desired amplitude equation, while 
the dispersion relation to the desired order was obtained from the variation of (2.9). 

The derivation of the MCSE was found to involve three ordering parameters: the 
wave slope E ;  the spectral bandwidth d and a third parameter denoting the ratio of 
the group length to the current length. The MCSE, when applied to a steady current 
with variations along the stream, gives the modified Benjamin-Feir instability 
criterion as (4.9). On substitution of known first-order results in this expression, the 
initial wave steepness required for instability was found to be a function of the ratio 
of the current velocity U and the still-water phase velocity of the waves: I', = U/Zo. 
For waves propagating in the same direction as the current, the current was found 
to have a stabilizing effect on the waves. The waves are stretched by the current so 
that smaller steepness values result, while, simultaneously, a longer time than in the 
still-water case is required for the same amount of growth of the sidebands. For an 
adverse current gradient, a rapid destabilization of the waves was predicted. This 
is due to the steepening effect of the current, as well as the shorter time required for 
an equivalent amount of growth of the sidebands, when compared with the still-water 
case. 

For waves on a shearing current, the instability criterion is (4.14), with the spatial 
dependence of a,@) given by (4.15). In this case the initial wave steepness required 
for instability was found to be a function of the angle of incidence 6, as well as a 
function of the parameter I', = V/Zo. For r, > 0 and an angle of incidence 4 < 4 5 O ,  
and excluding values of r, in the vicinity of the caustic, the waves will be more 
stable in the Benjamin-Feir sense. For 4 marginally smaller than 90°, i s .  in the 
neighbourhood of the caustic, rapid destabilization of the waves is predicted owing 
to the amplification in wave steepness. For r, > 0 and 6 > 4 5 O ,  values of r, are close 
to the caustic regime, and small steepness values (and with corresponding short 
e-folding timescales) are required for instability. The waves are thus very unstable 
when compared to the still-water case. For r, < 0 and 4 less than approximately 
6 5 O ,  greater instability of the waves is predicted. For 4 > 6 5 O ,  as the steepness of the 
waves decrease, greater stability than for waves on still water is expected. When the 
above results are repeated using the fourth-order results of Dysthe (1979), it is found 
that, for a fixed value ofr,, the contribution of the wave-induced current is to further 
stabilize the waves (when compared to the third-order results). The upper limit 
zo < sin 4, was also identified. 

When the results of this paper are generalized to long-wave and short-wave 
interactions, the current velocity must be replaced by the second-order Stokes drift 
velocity associated with the long wave. Owing to the small magnitude of the Stokes 
drift current, rather large steepness values of the long wave are required for real-life 
applications. 

The author is pleased to acknowledge useful discussions with Professor 
0. M. Phillips. 
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